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Abstract—Ray tracing is an advanced technique utilized in
modern video games to enhance players’ immersive experience
by creating realistic and lifelike scenes. Ray tracing requires a
massive amount of calculation, thus, various algorithms, data
structures, and hardware have been developed to optimize ray
tracing. This literature review aims to provide a basic under-
standing of the fundamental data structures used in ray tracing,
such as bounding volume hierarchies (BVH), octrees, and kd-
trees. The review focuses primarily on the construction, traversal,
and intersection testing capabilities of these structures.
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I. INTRODUCTION

Ever since the first video game, Tennis for Two, was made, game
developers have tried their best to attract players by offering a unique
and exciting gameplay experience for their target audience. While
gameplay has always been a key factor, game developers have also
recognized the importance of graphics in creating a more immersive
experience for players. As a result, video games have evolved from
simple 2D pixelated graphics to more realistic 3D graphics, which
allows players to immerse themselves in the gaming world and
experience it from the perspective of the characters they are playing.
The use of the Tyndall effect in Red Dead Redemption 2, a video
game released in 2010, is an excellent demonstration of the progress
made in computer graphics to create a more realistic environment.

Ray tracing algorithm, originally developed in the 1970s [1], is
widely used in modern video games to create photorealistic scenes.
To optimize this algorithm, developers have focused on improving the
speed of accessing 3D objects, eliminating unnecessary calculations
of intersections, and reusing rendered pixels from previous frames.
This is where efficient data structures come into play. Without an
efficient data structure, ray tracing may have a negative impact on
gameplay, as it cannot achieve real-time global illumination.

This review covers several data structures, including kd-trees,
bounding volume hierarchies (BVH), and octrees, and examines their
advantages and disadvantages. By doing so, we hope to provide
insight into their performance trade-offs and potential applications
in game design.

II. BACKGROUND

Global illumination is a rendering technique that captures both
direct and indirect light reflected and refracted in the environment.
This results in a more realistic representation of lighting in a
scene. Ray tracing is a commonly used method to achieve global
illumination.

Ray tracing is a technique used in computer graphics to simulate
the behavior of light. It is based on the principles of geometrical
optics, which models light as rays that travel in straight lines and
carry simple physical properties such as intensity and color. However,
other properties, such as the phase of light, are ignored in this model.

Fig. 1. Example of global illumination. Image from wikipedia.

The process starts by emitting one or more rays from the camera
(eye position) through each pixel in an image plane. The nearest
intersection between the ray and all the objects in the 3D scene is
then calculated, as illustrated in figure 2. Depending on the properties
of the material, the color and intensity of the light at that point is
calculated and one or more reflection rays are sampled. This process
is repeated until a maximum depth is reached. Finally, the intensity
of the ray is traced back along its path according to the rendering
equation [6].

Lo(p⃗, ω⃗o) = Le(p⃗, ω⃗o) +

∫
Ω

f(p⃗, ω⃗i, ω⃗o)Li(p⃗, ω⃗i)(ω⃗i · n̂)dωi (1)

Where Lo is the radiance of the ray directing outward point p⃗
along direction ω⃗o, Le is the radiance emitted by the material, Li

is the incoming ray from the environment to point p⃗, and f is the
reflection function that only depends on the material of the reflecting
surface.

III. DATA STRUCTURES

A. Octree
1) Octree Structure and Construction: Octree is a hierarchical

data structure commonly used in computer graphics and 3D computa-
tional geometry for spatial partitioning as shown in figure 3. A node
in the octree represents a cubic volume of space and has eight child
nodes, each representing one-eighth of the parent node’s volume.
Octrees can be used to efficiently store and query spatial information,
making them well-suited for ray tracing applications.

https://en.wikipedia.org/wiki/Global_illumination


Fig. 2. A demonstration of ray tracing.
Image from An Introduction to Ray Tracing [4]

Fig. 3. A demonstration of the octree.
Image from Octree-Related Data Structures and Algorithms [3]

The construction of an octree begins by defining a root node that
encompasses the entire scene. The space within the root node is
then recursively subdivided into eight smaller cubic volumes until
a termination condition is met, such as reaching a maximum depth
or having a small number of primitives in a leaf node. The geometry
within each leaf node is stored as a list of primitives or references
to the original geometry. By ensuring a maximum number of objects
in the leaf node, the octree can divide into finer grids in dense areas
and larger grids in sparse areas.

In certain variations of the octree, non-leaf nodes can also store
objects such that each object is the child of the smallest node that
completely encloses its volume, rather than all nodes that intersect
with the object. This ensures that each object has exactly one parent
node.

2) Ray Traversal and Intersection Testing: In ray tracing,
octrees are used to accelerate intersection tests between rays and
scene geometry by only testing leaf nodes that potentially intersect
with the ray, which are known as ray cells. There are multiple
methods to traverse all ray cells in the octree [2].

• One of the most common traversal processes begins by testing
the ray against the bounding volume of the octree’s root node.
If no intersection occurs, further traversal is unnecessary as
the ray does not intersect any geometry in the scene. If an
intersection is found, the ray is then tested against the bounding
volumes of the child nodes, recursively descending the tree
until reaching the leaf nodes containing the actual geometry.
When a leaf node is reached, the ray is tested for intersection

Fig. 4. ray generator for quadtree (2D version of octree).
Image from Classification of Ray-Generators in Uniform Subdivisions and
Octrees for Ray Tracing [2].

against the geometry primitives stored in that node. Relevant
information such as intersection points, surface normal, and
material properties can be recorded for further processing.
The traversal process continues until all relevant nodes have
been visited or a termination condition is met, such as finding
the closest intersection point or reaching a maximum allowed
traversal depth.

• Another method starts from the first leaf node the ray’s origin
lies in. Each time, all the objects stored in the node are
tested for intersection with the ray. If an intersection is found,
the algorithm stops and the closest intersection is returned.
Otherwise, the algorithm tests the intersection between the ray
and the boundary of the current cell and moves to the next cell
adjacent to the current cell along the ray’s path. The algorithm
terminates when an intersection is found or no adjacent leaf
nodes exist. This algorithm, known as the ray generator [5] [2],
can be more time efficient than the previous method since the
algorithm may terminate early after finding an intersection, and
finding neighbors of cells generally has a lower time cost than
traversing the tree [7]. Figure 4 demonstrates the ray generator
algorithm.

The efficiency of octrees in ray tracing stems from their ability
to quickly discard large portions of geometry that are not intersected
by a ray. By traversing the tree and testing for intersections against
bounding volumes, the number of intersection tests against actual
geometry is significantly reduced compared to testing against all
geometry in the scene.

3) Suitable Scenarios Analysis: By dividing the 3D space into
smaller cubic cells, octrees can effectively reduce the number of
objects that need to be tested for intersection, resulting in signifi-
cant efficiency improvement. Moreover, octrees do not require prior
knowledge of the distribution of objects in the scene, which allows
them to be constructed quickly and efficiently.

However, octrees can have a higher memory overhead as they
require storing eight child pointers per internal node, as well as
additional node information such as bounding volumes or pointers to
parent nodes. Besides, in scenes with uneven geometry distribution
or high-depth complexity, octree traversal can be less efficient as
uniform partitioning may lead to deep trees with many empty nodes.

Based on these strengths and weaknesses, octrees are particularly
well-suited for scenarios where the scene has a relatively uniform
distribution of geometry and a high degree of spatial coherence.
However, they may not be the best choice for scenes with highly
irregular or complex geometry, as the structure of the octree may
become too complex to be useful.



Fig. 5. A demonstration of BVH. Image from wikipedia.

B. KD-Tree
1) KD-Tree Structure and Construction: Kd-trees are a

widely used data structure in computational geometry and computer
graphics, particularly for nearest-neighbor searches and ray tracing.
A kd-tree is a binary tree that recursively partitions space into two
subspaces along one of the coordinate axes. Each node in the tree
represents a splitting plane and its two children represent the resulting
subspaces.

To construct a kd-tree, the first step is to choose a splitting plane
that divides the scene into two parts with a roughly equal number
of basic objects in each part. This process is repeated recursively for
each child node until a termination condition is met, such as reaching
a maximum depth or having a small number of primitives in a leaf
node.

2) Advantages and disadvantages: As kd-trees’ splitting
planes can be positioned anywhere along the axes, they adapt well
to the spatial distribution of geometry in the scene. This adaptability
leads to efficient partitioning, which can improve traversal perfor-
mance. Moreover, kd-trees’ application is not limited in 3D and ray
tracing, making them a versatile data structure in computer graphics
and computational geometry.

Nevertheless, updating the kd-tree for dynamic scenes can be
challenging, as moving or modifying geometry may require tree
restructuring and reinsertion of objects. This can be computationally
expensive and may limit its applicability in real-time applications.

C. Bounding Volume Hierarchy
1) BVH Structure and Construction: A BVH is a tree data

structure that organizes geometric objects in a hierarchical manner,
using bounding volumes to enclose groups of objects [9]. The BVH
consists of two types of nodes: internal nodes and leaf nodes. Each
internal node represents a bounding volume containing its child
nodes, while leaf nodes store references to the actual geometric
objects in the scene.

The choice of bounding volume is crucial for the performance
of BVH, as it affects traversal efficiency and memory overhead.
Commonly used bounding volumes include axis-aligned bounding
boxes (AABBs) and oriented bounding boxes (OBBs). AABBs are
generally preferred due to their simplicity and lower computational
cost during intersection tests. In rare cases, bounding spheres are used
due to their simplicity of computation and less difficulty in code.

The construction of a BVH involves partitioning the scene geom-
etry into smaller subsets recursively, creating a hierarchical structure.
The first step is choosing a suitable partitioning axis and splitting
criterion, dividing the objects into two groups based on the chosen
axis and criterion, and then creating a bounding volume for each
group, encompassing all objects within the group. This process is
repeated recursively for each child node until a termination condition
is met, such as reaching a maximum depth or a minimum number of
objects per leaf node.

There are several heuristics for selecting the partitioning axis and
splitting criteria, such as spatial median, object median, and surface
area heuristics, as shown in figure 6.

• Spatial median heuristic: Partition so that each child has equal
volume.

Fig. 6. Methods of partition. From left to right are the space median heuristic,
object median heuristic, and surface area heuristic.
Image from median.com

• Object median heuristic: Partition so that each child contains an
equal number of objects.

The next section will explain surface area heuristics (SAH) in
detail.

2) Surface Area Heuristics (SAH): The Surface Area Heuris-
tics (SAH) partitions the bounding volume based on the total surface
area of all objects and the number of objects in the volume. A set of
objects A = {a1, a2, · · · , an}, with the bounding volume of surface
area S, is partitioned into two sets A1 and A2, whose bounding
boxes’ surface areas are S1 and S2, then the cost function is written
as equation 2 [8].

C =
S1

S
tt 1 +

S2

S
tt 2 +

S1

S

∑
a∈A1

ti a +
S2

S

∑
a∈A2

ti a (2)

Where tt n is the estimate of the time it takes to traverse the nth
sub tree (where n = 1, 2), ti a is the estimated time to compute the
intersection between a ray and the object a. Equation 2 can also
generalize to the partitioning of multiple subsets.

If we assume that the rays have an equal probability of coming
from any direction, the conditional probability of the ray intersecting
with bounding volume S1 given the ray intersects with S is the ratio
of S1 and S’s average projection area. If we further assume that the
bounding volumes are convex, then the average projection area is
equal to 1/4 of the total surface area [10]. That is:

P (S1|S) =
S1/4

S/4
=

S1

S
(3)

A similar equation can be written for S2.

P (S2|S) =
S2

S
(4)

Thus, the cost function of SAH on node A represents the ex-
pectation of time cost, including the cost to traverse the sub-trees
and to check for intersections, given that the ray intersects with its
bounding volume, S. SAH is designed such that after partitioning,
the area with the most number of objects will get the least amount of
volume, ensuring a minimum expectation time to test the intersection.

3) Advantage and disadvantage: BVH structures, similar to
kd-trees, can be computationally expensive to build, particularly
for dynamic scenes where frequent hierarchy updates are required.
However, by using heuristics like the Surface Area Heuristic (SAH),
the construction of BVH can be relatively faster.

Additionally, BVH structures can be traversed in parallel, making
them ideal for GPU-based ray tracing implementations that leverage
the massively parallel processing capabilities of modern GPUs. We
will discuss parallel construction in the following section.

IV. OPTIMIZATIONS

A. Parallel Construction
Parallel construction techniques aim to leverage the computational

power of modern hardware such as multi-core CPUs and GPUs, to
accelerate the construction process, and enable real-time applications
in gaming and other interactive scenarios.

The construction of octree, BVH, and other data structures in ray
tracing also benefit from the development of hardware. Octrees are

https://en.wikipedia.org/wiki/Bounding_volume_hierarchy
https://medium.com/@bromanz/how-to-create-awesome-accelerators-the-surface-area-heuristic-e14b5dec6160


a hierarchical data structure that can be constructed using a bottom-
up approach, where objects are inserted into the tree and the tree
is partitioned recursively. To parallelize this process, one can divide
the scene geometry into smaller subsets and assign each subset to
a separate processing unit (e.g., a CPU core or GPU thread). Each
processing unit constructs a local octree for its assigned subset, and
these local octrees are then merged into a global octree.

Similar to octrees, BVH construction can also be accelerated by
parallel techniques. One popular approach for parallel BVH con-
struction is the use of binning, where the scene geometry is divided
into spatial bins along the partitioning axis. Each bin is processed
independently by a separate processing unit, which calculates the
optimal split position and bounding volume for its assigned bin. Once
all bins have been processed, the results are combined to form the
final BVH structure.

This approach takes advantage of the inherent parallelism in
the construction process and significantly reduces construction time.
It is essential for real-time applications in interactive and gaming
scenarios, where rapid updates to data structures are required to
accommodate dynamic scenes and user interactions.

B. Octree-R

Octree-R is an octree-variant data structure introduced by Kyu-
Young Whang in 1995[11]. The prior objective of octree-r is to
reduce the number of ray-object intersection tests. This is achieved by
dividing the space using the plane that results in the least estimated
number of ray-object intersection tests to create an octree, rather than
using a spatial median to divide the space.

We should first note the cost model[11] for ray tracing using
octrees, which is presented in the equation5 as follows:

Cost = nv · Tv + nt · Ti (5)

Where nv represents the number of voxels the ray has passed, Tv

represents the time for the ray to move to the next voxel, nt represents
the number of ray-object intersection tests, and Ti represents the time
taken for a ray-object intersection test. The equation indicates that if
we assume the same number of voxels in the octrees to be compared,
the one having the smallest value for nt will have the smallest time
cost.

Suppose that volume A contains volume B. Similar to SAH, we use
the same estimate of P (B|A) as shown in equation 3, which stands
for the conditional probability for a ray to pass volume B when the
ray passes volume A. Based on this equation, we can now estimate
the expected number of ray-object intersection tests by applying it
when we divide a given space R as shown in figure 7.

The conditional probability for a ray to pass through the space A
once it passes through the space R is as follows:

P (A|R) =
SA(t)

SR
=

2(tb+ tc+ bc)

2(ab+ ac+ bc)
=

t(b+ c) + bc

a(b+ c) + bc
(6)

A similar equation can be written for space B:

P (A|R) =
SB(t)

SR
=

(a− t)(b+ c) + bc

a(b+ c) + bc
(7)

Now let us denote the number of objects intersecting with plane
t in figure 7 as s(t), the number of objects completely included in
the space A as n(t), and the number of objects completely included
in the space B as m(t). Then, the expected number of ray-object
intersection tests can be given as follows:

E(t) =
SA(t)

SR
n(t) +

SB(t)

SR
m(t) +

{
SA(t)

SR
+

SB(t)

SR

}
s(t) (8)

Fig. 7. Finding a proper dividing plane
Image from Octree-R: Adaptive Octree for Efficient Ray Tracing [11]

We can then substitute equation 8 with equation 6 and equation 7
and obtain:

E(t) =
t(b+ c) + bc

a(b+ c) + bc
n(t)

+
(a− t)(b+ c) + bc

a(b+ c) + bc
m(t) +

a(b+ c) + 2bc

a(b+ c) + bc
s(t)

(9)

MacDonald and Booth [8] identified in 1990 that the optimal
splitting plane lies between the spatial median and the object median.
In order to divide the space into eight voxels, we should find the t
planes for each axis of X, Y, and Z, which minimize the equation
9. This process can be accomplished by traversing several points
equally spaced between the object median and the spatial median.
The number of points should be decided through tests. By recursively
repeating the process, we obtain an octree-R, which provides a
performance gain of 4% to 47% over the conventional octree in the
experiment[11].

V. CONCLUSION

In conclusion, data structures such as octree, kd-tree, and BVH
play an important role in enabling real-time ray tracing in modern
video games. Each data structure has its own advantages and lim-
itations in terms of construction, traversal, and intersection testing
performance. Optimizations like parallel construction and surface area
heuristics can help improve the efficiency of these data structures.

Current game engines have started to showcase ray tracing tech-
nologies with impressive visual effects, such as Unreal Engine 5’s
Nanite virtualized micropolygon geometry system, which demon-
strate the potential of upcoming ray tracing technologies. By leverag-
ing massive amounts of geometric detail, future games may be able
to create highly detailed and complex virtual environments that feel
lifelike.

However, there is still space for further improvement. Future ray
tracing techniques will likely focus on accelerating performance
through specialized hardware optimizations, more efficient data
structures, and algorithmic improvements. As computational power
continues to increase with advances in CPU and GPU technologies,



Fig. 8. Scene rendered by Unreal Engine 5
Image from docs.unrealengine.com

we may see fully path-traced global illumination become feasible for
real-time rendering in the near future.
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